Monday, May 15, 2017

Transformer

Transformer

 

A transformer is an electrical device that transfers electrical energy between two or more circuits through electromagnetic induction.

 


    Ideal transformer equations (eq.)

By Faraday's law of induction:
V_\text{S} = -N_\text{S} \frac{\mathrm{d}\Phi}{\mathrm{d}t} . . . (1)[a]
V_\text{P} = -N_\text{P} \frac{\mathrm{d}\Phi}{\mathrm{d}t} . . . (2)
Combining ratio of (1) & (2)
Turns ratio {\displaystyle ={\frac {V_{\text{P}}}{V_{\text{S}}}}={\frac {-N_{\text{P}}}{-N_{\text{S}}}}=a} . . . (3) where
for step-down transformers, a > 1
for step-up transformers, a < 1
By law of conservation of energy, apparent, real and reactive power are each conserved in the input and output
{\displaystyle S=I_{\text{P}}V_{\text{P}}=I_{\text{S}}V_{\text{S}}} . . . (4)
Combining (3) & (4) with this endnote[b][4] yields the ideal transformer identity
\frac{V_\text{P}}{V_\text{S}} = \frac{I_\text{S}}{I_\text{P}}=\frac{N_\text{P}}{N_\text{S}}=\sqrt{\frac{L_\text{P}}{L_\text{S}}}=a . (5)
By Ohm's law and ideal transformer identity
Z_\text{L}=\frac{V_\text{S}}{I_\text{S}} . . . (6)
Apparent load impedance Z'L (ZL referred to the primary)
Z'_\text{L} = \frac{V_\text{P}}{I_\text{P}}=\frac{aV_\text{S}}{I_\text{S}/a}=a^2\frac{V_\text{S}}{I_\text{S}}=a^2{Z_\text{L}} . (7)


No comments:

Post a Comment