Tuesday, May 16, 2017

Rensonware

 Rensonware


a type of malicious software designed to block access to a computer system until a sum of money is paid.

Ransomware is a type of malicious software that carries out the cryptoviral extortion attack from cryptovirology that blocks access to data until a ransom is paid and displays a message requesting payment to unlock it.

History

Encrypting ransomware

The first known malware extortion attack, the "AIDS Trojan" written by Joseph Popp in 1989, had a design failure so severe it was not necessary to pay the extortionist at all. Its payload hid the files on the hard drive and encrypted only their names, and displayed a message claiming that the user's license to use a certain piece of software had expired. The user was asked to pay US$189 to "PC Cyborg Corporation" in order to obtain a repair tool even though the decryption key could be extracted from the code of the Trojan. The Trojan was also known as "PC Cyborg". Popp was declared mentally unfit to stand trial for his actions, but he promised to donate the profits from the malware to fund AIDS research.[27]
The notion of using public key cryptography for ransom attacks was introduced in 1996 by Adam L. Young and Moti Yung. Young and Yung critiqued the failed AIDS Information Trojan that relied on symmetric cryptography alone, the fatal flaw being that the decryption key could be extracted from the Trojan, and implemented an experimental proof-of-concept cryptovirus on a Macintosh SE/30 that used RSA and the Tiny Encryption Algorithm (TEA) to hybrid encrypt the victim's data. Since public key crypto is used, the cryptovirus only contains the encryption key. The attacker keeps the corresponding private decryption key private. Young and Yung's original experimental cryptovirus had the victim send the asymmetric ciphertext to the attacker who deciphers it and returns the symmetric decryption key it contains to the victim for a fee. Long before electronic money existed Young and Yung proposed that electronic money could be extorted through encryption as well, stating that "the virus writer can effectively hold all of the money ransom until half of it is given to him. Even if the e-money was previously encrypted by the user, it is of no use to the user if it gets encrypted by a cryptovirus".[12] They referred to these attacks as being "cryptoviral extortion", an overt attack that is part of a larger class of attacks in a field called cryptovirology, which encompasses both overt and covert attacks.[12]
Examples of extortionate ransomware became prominent in May 2005.[28] By mid-2006, Trojans such as Gpcode, TROJ.RANSOM.A, Archiveus, Krotten, Cryzip, and MayArchive began utilizing more sophisticated RSA encryption schemes, with ever-increasing key-sizes. Gpcode.AG, which was detected in June 2006, was encrypted with a 660-bit RSA public key.[29] In June 2008, a variant known as Gpcode.AK was detected. Using a 1024-bit RSA key, it was believed large enough to be computationally infeasible to break without a concerted distributed effort.[30][31][32][33]
Encrypting ransomware returned to prominence in late 2013 with the propagation of CryptoLocker—using the Bitcoin digital currency platform to collect ransom money. In December 2013, ZDNet estimated based on Bitcoin transaction information that between 15 October and 18 December, the operators of CryptoLocker had procured about US$27 million from infected users.[34] The CryptoLocker technique was widely copied in the months following, including CryptoLocker 2.0 (though not to be related to CryptoLocker), CryptoDefense (which initially contained a major design flaw that stored the private key on the infected system in a user-retrievable location, due to its use of Windows' built-in encryption APIs),[24][35][36][37] and the August 2014 discovery of a Trojan specifically targeting network-attached storage devices produced by Synology.[38] In January 2015, it was reported that ransomware-styled attacks have occurred against individual websites via hacking, and through ransomware designed to target Linux-based web servers.[39][40][41]
Some ransomware strains have used proxies tied to Tor hidden services to connect to their command and control servers, increasing the difficulty of tracing the exact location of the criminals.[42][43] Furthermore, dark web vendors have increasingly started to offer the technology as a service.[43][44][45]
Symantec has classified ransomware to be the most dangerous cyber threat.[46]

Non-encrypting ransomware

In August 2010, Russian authorities arrested nine individuals connected to a ransomware Trojan known as WinLock. Unlike the previous Gpcode Trojan, WinLock did not use encryption. Instead, WinLock trivially restricted access to the system by displaying pornographic images, and asked users to send a premium-rate SMS (costing around US$10) to receive a code that could be used to unlock their machines. The scam hit numerous users across Russia and neighboring countries—reportedly earning the group over US$16 million.[15][47]
In 2011, a ransomware Trojan surfaced that imitated the Windows Product Activation notice, and informed users that a system's Windows installation had to be re-activated due to "[being a] victim of fraud". An online activation option was offered (like the actual Windows activation process), but was unavailable, requiring the user to call one of six international numbers to input a 6-digit code. While the malware claimed that this call would be free, it was routed through a rogue operator in a country with high international phone rates, who placed the call on hold, causing the user to incur large international long distance charges.[13]
In February 2013, a ransomware Trojan based on the Stamp.EK exploit kit surfaced; the malware was distributed via sites hosted on the project hosting services SourceForge and GitHub that claimed to offer "fake nude pics" of celebrities.[48] In July 2013, an OS X-specific ransomware Trojan surfaced, which displays a web page that accuses the user of downloading pornography. Unlike its Windows-based counterparts, it does not block the entire computer, but simply exploits the behavior of the web browser itself to frustrate attempts to close the page through normal means.[49]
In July 2013, a 21-year-old man from Virginia, whose computer coincidentally did contain pornographic photographs of underaged girls with whom he had conducted sexualized communications, turned himself in to police after receiving and being deceived by ransomware purporting to be an FBI message accusing him of possessing child pornography. An investigation discovered the incriminating files, and the man was charged with child sexual abuse and possession of child pornography.[50]

Leakware (also called Doxware)

The converse of ransomware is a cryptovirology attack that threatens to publish stolen information from the victim's computer system rather than deny the victim access to it.[51] In a leakware attack, malware exfiltrates sensitive host data either to the attacker or alternatively, to remote instances of the malware, and the attacker threatens to publish the victim's data unless a ransom is paid. The attack was presented at West Point in 2003 and was summarized in the book Malicious Cryptography as follows, "The attack differs from the extortion attack in the following way. In the extortion attack, the victim is denied access to its own valuable information and has to pay to get it back, where in the attack that is presented here the victim retains access to the information but its disclosure is at the discretion of the computer virus".[52] The attack is rooted in game theory and was originally dubbed "non-zero sum games and survivable malware". The attack can yield monetary gain in cases where the malware acquires access to information that may damage the victim user or organization, e.g., reputational damage that could result from publishing proof that the attack itself was a success.

Mobile ransomware

With the increased popularity of ransomware on PC platforms, ransomware targeting mobile operating systems have also proliferated. Typically, mobile ransomware payloads are blockers, as there is little incentive to encrypt data since it can be easily restored via online synchronization.[53] Mobile ransomware typically targets the Android platform, as it allows applications to be installed from third-party sources.[53][54] The payload is typically distributed as an APK file installed by an unsuspecting user; it may attempt to display a blocking message over top of all other applications,[54] while another used a form of clickjacking to cause the user to give it "device administrator" privileges to achieve deeper access to the system.[55]
Different tactics have been used on iOS devices, such as exploiting iCloud accounts and using the Find My iPhone system to lock access to the device.[56] On iOS 10.3, Apple patched a bug in the handling of JavaScript pop-up windows in Safari that had been exploited by ransomware websites



No comments:

Post a Comment